AD=AD76 486 GEORGE WASHINGTON UNIV WASHINGTON D C INST FOR MANAG==-ETC F/6 12/1 <
BASIC RESULTS IN THE DEVELOPMENT OF SENSITIVITY AND STABILITY A==ETC(U)
AUG 79 A V FIACCO » W P HUTZLER DhA629-79-C-0062

UNCLASSIFIED 5€RIAL-T-¢07 ARO=16229,1~-M

END
DATE
FILMED
Je—79
T o




HA076486

THE

GEORGE
WASHINGTON
UNIVERSITY

a gg Tg
g ¢

STUDENTS FACULTY S
ESEARCH DEVELOPME
URE CAREER CREATIV

NOLOGY F

INSTITUTE FOR MANAGEMENT
SCIENCE AND ENGINEERING
SCHOOL OF ENGINEERING
AND APPLIED SCIENCE

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC RELEASE AND SALE; ITS DISTRIBUTION IS UNLIMITE

MMUNITY LEADERSHI

'UDY R
NT FUT




=

BASIC RESULTS IN THE DEVELOPMENT OF SENSITIVITY AND STABILITY
ANALYSIS IN CONSTRAINED MATHEMATICAL PROGRAMMING

by

Anthony V. Fiacco
William P. Hutzler

Serial T-407
7 August 1979

The George Washington University
School of Engineering and Applied Science
Institute for Management Science and Engineering

U. S. Army Research Office-Durham
Contract Number DAAG29-79-C-0062

This document has been approved for public
sale and release; its distribution is unlimited.

1913 11 1Us




NONE

B SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

REPORT NUMBER 2. GOVT ACCESSION NO.

T-407 Y

3. RECIPIENT'S CATALOG NUMBER

4.

| A
2/ AND STABILITY ANALYSIS IN C

TITLE (and Subtitle)

3§ASIC,KESULTS IN THEJQEVELOPMENT OF SENSITIVITY

5. TYPE OF REPORT & PERIOD COVERED
Y ettt

/q \
j{’ SCIENTIFIC | 2 £ f._,

NSTRAINED MATHE- —
= = e - 6. EORMING ORG. REPORT NUMBER
MATICAL PROGRAMMING.s = = L 107 =
7. AUTHOR(s) i } 8. CONTRACT OR GRANT NUMBER(s)
] ANTHONY V./ETACCO 5 —C-0/
,0/ WILLIAM’I_’.!/’BUTZLER o Dadedes Eireegios
7 ™ - ~

9.

PERFORMING ORGANIZATION NAME AND ADDRESS
THE GEORGE WASHINGTON UNIVERSITY V
INSTITUTE FOR MANAGEMENT SCIENCE & ENGINEERING
WASHINGTON, D. C. 20052

10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

J -t

l/ 2

. CONTROLLING OFFICE NAME AND ADDRESS e
U. S. ARMY RESEARCH OFFICE //
BOX 12211 —

RESEARCH TRIANGLE PARK, NC 27709

1-43. num

+12. REPORT DATE

7_AUGUS! 79

OF PAGES

T 46

14

MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)

Ly

SERIAL~T~407

15. SECURITY CLASS. (of this report)

NONE

15a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION

/"'; c ' \
g 3 I~
a4 /‘; (i, U

| (%2 .

UNLIMITED.

. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fro.

m Report)

l ? 1 (ﬁ f) :) 7 j—‘/’:f
§ / |

. SUPPLEMENTARY NOTES

KEY WORDS (Continue on reverse aide if necessary and identify by block number)
NONLINEAR PROGRAMMING PARAME
SENSITIVITY ANALYSIS PERTUR
STABILITY ANALYSIS

SURVEY EXTENS

TERS
BATIONS

APPLICATIONS

IONS

20.

ABSTRACT (Continue on reverse side {f necessary and identify by block number)

For large classes of mathematical programming p

roblems, a detailed

technical survey is given of key developments in sensitivity and stability
analysis results, i.e., results characterizing the relationship between

the optimal value function or a solution set and problem perturbations.

The emphasis is on finite dimensional nonlinear assumptions and conclusions
of key results are given in the more than 30 theorems that are stated.

(continued)

DD ,73n'7s 1473

EDITION OF 1| NOV 65 1S OBSOLETE
S/N 0102-014-6601 |

NONE

SECURITY CLASSIFICATION OF THIS PAGE (ﬁm Date Entered)

Lol 143




NONE

“LURITY CLASSIFICATION OF THIS PAGE(When Nata Entered)

20. Abstract (continued)

Some effort has been made to unify the notation and terminology and to
place the results in perspective. Direction of future research and appli-
cations are indicated. Finally, an extensive bibliography is included.
The paper is motivated by a desire to unify into one body of theory the
many penetrating results that are now known in this crucially important
area.

NONE
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

- s e




THE GEORGE WASHINGTON UNIVERSITY

School of Engineering and Applied Science
Institute for Management Science and Engineering

Technical Report
Serial T-407
7 August 1979

U. S. Army Research Office-Durham
Contract DAAG29-79-C-0062

BASIC RESULTS IN THE DEVELOPMENT OF SENSITIVITY AND STABILITY
ANALYSTIS IN CONSTRAINED MATHEMATICAL PROGRAMMING

by

Anthony V. Fiacco ,
William P. Hutzler

Abstract

For large classes of mathematical programming problems, a detailed
technical survey is given of key developments in sensitivity and
stability analysis results, i.e., results characterizing the relation-
ship between the optimal value function or a solution set and problem

The emphasis is on finite dimensional nonlinear

perturbations.
Precise

problems with deterministic parametric perturbations.
assumptions and conclusions of key results are given in the more than
30 theorems that are stated. Some effort has been made to unify the
notation and terminology and to place the results in perspective.
Directions of future research and applications are indicated. Finally,
an extensive bibliography is included. The paper is motivated by a

desire to unify into one body of theory the many penetrating results

that are now known in this crucially important area.
: R
The Rand Corporation, Washington, D.C.
_H,_

Approved for public release;
distribution unlimited




- A The findings of this report are not to be
i construed as an official Department of the

’ Army position, unless so designated by

1 other authorized documents.

]




L. i

CONTENTS

INEEOGUEELON, S o o olaelelnlaale o/alaiase alalutolasla alars slateretole aaererets vl s ste ol
Objective Function and Constraint Set Continuity........... 3
2.1 Point-to-Set MapS.......s.. G e Sieto s ioleiaie alusla ot olete s 5ot o)
2.2 Right-Hand Side (RHS) PerturbationS............. 0 6 )
Differential Stability......cu... I B D R e O £ Gy T 2 10
3.1 Constraint QualificationS.....eeeeeee. olorels el 5 sl slela als .10
3.2 Differential Stability of the Extremal Value
Functionesesisns oo GO0 G OO G elesle shatratotclle heRettl 2
3.3 Lipschitz Properties........ D50 G0 00 G D0 C oleteYetetstolistorats 16
Implicit Function TheoremS......... 5 O IO B 0 B 65 L 6 O I 0 18
First-and Second-Order Sensitivity Analysis.......... et L

Additional Results, Applications and Future Research......29

RefCYenCES . s s sie«sivisisioisasioees o el alleele wn aielelin laix o a1 el alis e mne e ieshae 30




T-407

THE GEORGE WASHINGTON UNIVERSITY
School of Engineering and Applied Science
Institute for Management Science and Engineering
U. S. ARMY RESEARCH OFFICE - DURHAM

BASIC RESULTS IN THE DEVELOPMENT OF SENSITIVITY AND STABILITY
ANALYSIS IN CONSTRAINED MATHEMATICAL PROGRAMMING

by

Anthony V. Fiacco
William P. Hutzler

1. Introduction

Many algorithms have been developed, mainly in the last two
decades, for the solution of mathematical programming problems.
However, following the now well known parametric analysis in linear
programming [12,81,95,113] and a fairly comprehensive treatment of the
quadratic parametric problem [17,22,60], until very recently, there
has been only sporadic activity in the study of the solution
sensitivity of general nonlinear mathematical programs to
perturbations of the problem parameters. This paper gives a concise
survey of the state of the art in that area.

As the next two examples demonstrate, the solution of very simple
mathematical programs may not vary at all or may change drastically

for arbitrarily small perturbations of the problem parameters.

Example 1.

Consider the nonlinear program:

min (x, - e)2 4 (x, + "
g.L. X 2
X D> =X
2 -
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The analytical solution of this problem is easily seen to be:

((1+e)/2,-(1+€)/2) e < =1
xhe) = (xl(E),xz(e)) = (0,0) -1€e <1.
((e-1)/2,(e~1)/2) e>1

It is clear that x(e) is piecewise linear, continuous, and
differentiable everywhere except for ¢ = + 1. Tt is readily shown that
the optimal value function of this problem, f*(e) = f[x(e),e], is twice
differentiable everywhere except for ¢ = + 1, where it is only once
differentiable.

Unfortunately, as the next example illustrates, the solutions of

mathematical programs do not always behave so nicely.

Example 2.
min ex;
sy Ee =1 ixl
The solution of this problem is given by x*1= =1 if e > 0; x*lcan

be chosen as any value in [-1,o) if ¢ = 0; and if € <0, there is no
finite solution of this problem. Thus, as € varies in a small
neighborhood of the origin in El, the solution may be finite and
unique, may be unbounded, or there may be infinitely many solutions.
It should be clear from these two simple examples that very small
perturbations of the parameters of a mathematical program can cause a
wide variety of results. The purpose of this paper is to summarize
and illustrate the work that has been done to date in 1) providing
conditions under which the solutions of nonlinear programs are locally
well-behaved, and 2) estimating solution properties as a function of

problem parameters.
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2. Objective Function and Constraint Set Continuity

Some of the earliest work in sensitivity analysis for nonlinear
programming was concerned with the variation of the optimal objective
function value with changes in a parameter appearing in the right-hand
side of the constraints, i.e. involving problems of the form:

minimize f(x), subject to g(x) > ¢,

where f: E - El, and g: E"> E". The theory of point-to-set maps
(cf. Berge [13]) has been used for much of the analysis of this
problem. Hogan [67] has provided an excellent development of those
properties of point-to~set maps which are especially useful in
deriving such results.

In the next sub-section we present several definitions and properties
relating to point-to-set maps which are needed in a number of important

results.

2.1 Point-to-Set Maps

Given two sets X and Y, a point-to-set mapping, ¢, from X to Y is
a function which associates with every point in X a subset of Y.
Following Berge [13], we say that the point-to-set mapping ¢ is
continuous if it is both upper semi-continuous (usc) and lower
semi-continuous (lsc) in X. These last two notions are established by

the following definitions.

Definition 2.1. Let ¢ be a point-to-set mapping from X to subsets of Y.

i) ¢ is lsc at x € X if, for each open set SCY satisfying
Sﬂ¢(xo) 0, ghere exists a neighborhood N of X N(xo),
such that for each x in N(x ), ¢(x)NS # @.

ii) ¢ is usc at x € X if, for egch open set SCY containing
¢(xo), there :xists a neighborhood N of Xo’ N(xo), such

that for each x in N(x ), ¢(x)CS.
0
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An alternative definition of semi-continuity for point-to-set
maps is based on the convergence of sets in the range space Y. Let
{x,} be any sequence of points in X such that xn* X, and let 9 be a

point- to-set mapping from X to subsets of Y.

Definition 2.2. i) ¢ is lIsc (or open) at xeX if, for each §c¢(§),
there exists a value m and a sequence {y“}g;Y such
that ynep(xn) for each n_> m and ¥, y. ;

ii) ¢ is usc (or closed) at xeX if yne¢(x) and R

together imply that ye¢(X).

Furthermore, if ¢ is lsc at each point of X, then it is said to
be 1lsc in X; and if ¢ is usc at each point of X with ¢(x) compact for
each x, then ¢ is said to be usc in X. Using these definitions, the
following results are easily established for real-valued functions
(cf. Berge [13]). Kummer [74] has obtained similar results and has

applied them to the particular case of quasi-convex programs.

Theorem 2.3. If f is a real-valued usc (lsc) function defined on

X x Y and if ¢ is a Isc (usc) mapping from X into Y such that for

each x, ¢(x) # #, then the (real-valued) function f*, defined by
£%(x) = inf {£(x,y)}

is use (lsc). yey

Theorem 2.4. If f is a continuous real-valued function defined on the
space Y and ¢ is a continuous mapping of X into Y such that ¢(x) # @.
for each xe X, then the (real-valued) function f*, defined by

f*(x) = min {f(y)}
yed(x)

is continuous in X. Furthermore, the mapping F, defined by
F(x) = {y:iyed(x), £(y) = £5(0f,

is a usc mapping of X into Y.

Conditions which imply the continuity of the solution of a
mathematical program have been given by Dantzig, Folkman, and

Shapiro [25], and by Robinson and Day [102]. Letting

-4




f be a mapping from a metric space X to El, with H(e)C X, and defining
M(f:H(g)) = ixgu(e): f(x) = inf {f(y): ycH(c)H Dantzig, et. al. obtain

conditions on the variation of f and H which are necessary and sufficient

for M(f:H(e)) to vary in a closed manner. When H is defined by linear

inequalities, they obtain under appropriate conditions, that M(f:H(g)) is

a closed function. Under this same hypothesis, letting M*(f:H(e)) denote
the mapping M(f:h(e)) when it is a singleton, they obtain conditions
which yield the continuity of M*(f:H(e)) as a function of the

parameter €.

Theorem 2.5. Let H be a point-to-set mapping from the metric space
T to the set of subsets of En, with H(e) a closed set for each € in
T. Let T' = {€ in T: H(e) # 6}. Suppose H(€) is connected for each
€ in T', and for some €* in T', H(c*) is compact. Furthermore,
assume that for every sequence {En}C'T', €n+€* implies

lim H(e ) = H(e*). Then, if feC(En), the mapping e>M*(f:H(e))
n—+c0 n

is continuous at €* if €* is in its domain.

If g is an affine function from E™ to E™, denote by H(g) the
set {xe E™ g(x) > 0}. The function g is said to be nondegenerate
w "h respect to the set RCE™ if H(g) NR has a nonempty interior

no component of g is identically zero. The continuity of

M(f:H(g) NR) and M*(f:H(g) N R) as functions of g are given by the

following theorems. ?
Theorem 2.6. If f is continuous and R is closed and convex, then
M(f:H(g) NR) is closed at every nondegenerate point g.

Theorem 2.7. If f is quasiconvex or H(g)N R is bounded, then
M*(f:H(g) NR) is continuous at a nondegenerate point g of its

domain.




ke g

T-407

Robinson and Day [102], considering a general constraint set, R(e),
provide conditions which guarantee the continuity of the point-
to-set mappirg whose range is the set of solutions of the
mathematical program

minimize f(x,€)
s.t. xeR(e)
e in T,
where R(€) represents a constraint set as a function of the
parameter €, and X and T are topological spaces. To that end,
let f*(e) = minx{f(x,e): xeR(e)}, and define the mapping S:T-X
by s(e) = {x: f(x,e)< f%(e)}NR(e). Assume R(e) is continuous on T.

Theorem 2.8. Let X be locally convex and let R # # be convex-valued
on T. If f(x,e) = min{u(x,e), o(e)}, where ueC(X x T) and is
strictly quasi-convex in x for each fixed €, and 0eC(T), then

S is continuous and convex valued on T.

2.2 Right-Hand Side (RHS) Perturbations

In this section we will be concerned with problems of the form:
minimize f(x), s.t., g(x) > €, Pl(e)

where f: EM—E- and g: E"—E". Associated with problem Pl(E) are the
following four sets:
i) the feasible region, R(e)={x: g(x) > e},
ii) the set B ={e:R(e) # ¢},
iii) a set associated with the interior of the feasible region,
I(e) = {x:g(x} > e},
iv) the optimal value function, f*(e) = inf {f(x):xeR(e)}.

One readily sees that i), iii) and iv) may each be viewed as a point-
to-set mapping. It is precisely this observation which has been
exploited in characterizing the variation of both the solution and

the optimal objective function value as functions of the parameter €.




The following three theorems, due to Evans and Gould [34],

provide conditions for the stability of the constraint set, i.e. the
feasible region R(e), as well as for the continuity of the optimal
objective function. In the statements of these results, we will
denote by R a point-to-set mapping from the set B g:Em to the set of
all subsets of E®, with the image of ¢ in B given by R(e). The

interior of the set B is denoted by Int(B), and the closure of I(g) is

denoted by I(e). Assume g is continuous.

Theorem 2.9. i) The mapping R is usc at € if and only if there exists a
vector €' < ¢ such that R(g') is compact.
ii) If R(e) is compact and I(e) # @, then R is lsc at € if and

only if I(e) = R(e).

*

Theorem 2.10. i) If f is 1sc and R is usc at €, then f 1s left

continuous (1lsc) at €. 2
ii) If I(e) # @, f is usc and R is lsc at €, then f is

right continuous (usc) at e.

Theorem 2.11l. Suppose € is in Int(B) and that f is continuous, feC(En).

\J

Also assume that there exists a vector €' < € such that R(e') is compact,

and that I(e) = R(e). Then f* is continuous at €.

Theorem 2.11 is related to the second result of Berge, i.e., Theorem
2.4, in that Evans and Gould have given conditions which imply the
hypotheses of Berge's theorem. The question of the stability of the
set of optimal solutions and the stability of the optimal objective
function value have been addressed by a number of authors. Greenberg
and Pierskalla [58], referring to problem Pl’ have shown that the point-
to-set mapping ¢, which maps E" to subsets of E and is defined by
¢ () = {xeR(e):f(x) = f*(e)} is usc at € if R is usc at € and if f*
is continuous at €. This result is very similar to one given by
Dantzig, Folkman, and Shapiro [25] and by Berge [13]. The essential
differences among these results lie in the use of semi-continuity in

[58] and the closedness of maps in [25], while the conclusion drawn in

oy
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[13] is based on the continuity of R.

Considering the perturbation function 1or convex programming
problems, which is central to the construction of decomposition algo-
rithms for large-scale nonlinear programs, Hogan [68] established
conditions for its continuity. That result has been extended to the
case in which the parameter of the problem appears in the objective
function as well as in the constraints. These results are given

in the next two theorems.

Theorem 2,12. Let f*(e) = infx{f(x): xeX, gix)>e} . If
i) X is a compact convex set,
ii) f is continuous on X,
iii) 8 is lsc on X, and
iv) each gi is strictly concave on X.

*
then £ is continuous on its domain.

Theorem2,13. Let ) = infx{f(x,e): xeX, glx,c) » 0}. If
i) X is a compact convex set,
ii) f and g are both continuous on X, and
iii) g is strictly concave on X for each e.

* . ; ‘s
then f° is continuous on its domain.

More recently, Clarke [21] has shown that if X is a Banach space

and f is locally Lipschitz then programs of the form Pl(E), with xeSCX

are '"mormal" in the sense that generalized Kuhn-Tucker conditions

can be shown to pertain, even in the absence of differentiability and
convexity assumptions. Clarke terms the program

min f(x)

s.t. g (x) > € 3 i ORI | 1 P_(c)
xXeS, S closed in En, 2




"normal" if Karush-Kuhn-Tucker type multipliers exist for any x which solves
Pz(e). Pz(e) is said to be "calm" if ¢(e) is finite and

lim inf [¢(e") - ¢(e))/ |e'- €] > - o

e'r ¢ (2.1)
where
inf{f(x):xeS, g(x) > ¢} R(e) # P ;
$(e) = '

+00 R(e) = P 3
Note that the limit quotient in (2.1) is a form of stability also used ‘
by Rockafellar [105]. Using these notions, Clarke showed that if Pz(e)
is calm it is also normal and if ¢(e) is finite in a neighborhood of
€ = 0, then Pz(e) is calm and normal for almost all € in a neighborhood of
of 0. Conditions sufficient for the calmness (and hence the normality) 1

of Pz(a) are given in the following theorem.

Theorem 2.14. If
i) -gi’ i=1,...,m, are convex, j

* ii) S is convex and bounded,

iii) f is bounded and Lipschitz on S, and

iv) there exists a point xeS such that g(x) > €, f

then Pz(e) is calm.

Additional stability results for right hand side perturbations
are discussed in the next section where we summarize the results that
have been achieved in the area of differential stability. In Section
5, first- and second-order sensitivity of the objective function under

right hand side perturbations is indicated.
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| 3. Differential Stability

In this section we concentrate on theory that has been developed
to analyze various differentiability properties of the optimal value
function. We begin with a brief discussion of several well known
constraint qualifications, one of which is often involved in obtaining

some of the results.

3.1 Constraint Qualifications

The constraint qualifications used in mathematical programming
are regularity codditions which are generally imposed to insure that
the set of Karush-Kuhn-Tucker multipliers corresponding to the optimal
solution of a mathematical program is nonempty. We present here
five qualifications which are fregquently applied. These and a number
of others are treated in some detail by Mangasarian [79]. Throughout
this discussion, we shall assume the constraint set R = {xcEn: g(x) > 0,

h(x) = 0}, where g:En >E" and h:E" ~EP. Define B(x) = {i:gi(x) = 0}.

CQl. The Mangasarian-Fromovitz constraint qualification is said to

hold at a point x*R if:

i) there exists a vector yeEn such that Vgi(x*) y >0
for all ieB(x*), th(x*) y =0 for j =1,...,p, and

ii) the gradients {th(x*), j=1,...p,} are linearly independent.

ILf the gi are concave (or even pseudo-concave) functions and the
h, are affine, then CQl is equivalent to the well-known Slater

condition, a general form of which we give as CQ2.

w] =
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Definition 3.1. If the function f: En > El is differentiable on the

convex set S and f(y) > f(x) for all x, yeS, with Vf(x) (y-z) > 0, then

f is said to be psuedo-convex on S. (The function f is said to be

pseudo-concave if -f is pseudo-convex.)

CQ2. The Slater constraint qualification is satisfied at x*egR if h,
e 3

is affine for each j, g

*eR with gi(;) > 0 for eacn i in B(x*).

is pseudo-concave and there exists a point

CQ3. The linear independence assumption is said to hold at x*R if
the gradients {Vgi(x*), ieB(x*); th(x*), j=1,...,p} are linearly

independent.

CQ4. 1If there are no equality constraints and E:ungi(x*) = 0 has no
ieB(x¥*)

non-zero solution u, > 0 for x*eR, the Cottle constraint qualification

is said to hold at x*. (In the absence of equality constraints, CQl

is equivalent to CQ4.)

CQ5. The Kuhn-Tucker constraint qualification is satisfied at

n
x*¢R if, for each non-zero vector zE satisfying Vgi(x*)z > 0 for each
ieB(x*) and Vh (x*)z =0, j = 1,...,p, z is tangent to a once-dif-

o
ferentiable arc originating at x* and contained in R.

The relationships that hold among these qualifications, in
addition to those already mentioned, are that CQ3 implies CQl which,
in turn, is sufficient for CQ5. For a proof and further discussion
of the relationships among these constraint qualifications see
(95 61].

Robinson [101] has shown the equivalance of CQl and a form of
local stability of the set of solutions of a system of inequalities.
Gauvin [49] has shown that CQl is both necessary and sufficient for

the set of Lagrange multiplier vectors corresponding to a given local

==
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solution of a general NLP problem to be nonempty, compact and convex.
In addition, Gauvin and Tolle [50] establish that CQl is preserved

under RHS perturbations.

3.2 Differential Stability of the Extremal Value Function

One of the earliest characterizations of the differential stability
of the extremal value function of a mathematical program was provided
by Danskin [23,24]. Addcessing the problem minimize f(x,e) subject to

xeR, R some topological space, Danskin derived conditions under which

the directional derivative of the extremal value function exists and

also determined its representation.

Definition 3.2. The (one-sided) directional derivative of the function

f(x) in the direction z is defined to be:

D f(x) = lim [(f(x+gz) - £(x))/g]
g0+t
if the limit exists.

Theorem 3.3. Let R be non-empty and compact and let f and the partial
: ; ; : . k _
derivatives Bf/Bei be continuous. Then, at any point € in E  and for any
; Jk 3 : ; . ; ’ " ;
direction zeE , the directional derivative of f* exists and is given by

sz*(e) = min zV_ £(%,e);
xeS ()
where S(e) = {x:x minimizes f(x,e) over R}.

This result has wide applicability in the sense that the constraint
space, R, can be any compact topological space. It has been extended
by a number of authors, including Demyanov and Rubinov [27], to other
spaces and a variety of functional forms. The principal restriction of
this result is that the set R does not vary with the parameter €.
However, since inequality and equality constraints can be "absorbed"
into the objective function of a program through the use of an
appropriate auxiliary function (Lagrangian, penalty function, etc.),
Danskin's result is readily applicable to auxiliary function methods.

[t can also be readily applied to the dual of a convex program with
right hand side perturbations. For the special case in which R is

defined bv inequalities, g(x,¢) > 0, and f and g are convex on S,

=]l
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Hogan [66] has shown that sz*(e) exists and is finite for all
k
zeE . The following theorem presents the details of this result for

fx(e) = inf {f(x,e): g(x,e) > 0}, where X is a subset of En. The
xeX

Lagrangian for this problem is defined as L(x,u,e) = f(x,€) - ug(x,€).
For convenience and without loss of generality, we shall assume that the

parameter value of interest is € = 0, unless otherwise stated.

Theorem 3.4. Let X be a closed and convex set. Suppose f and -g are

convex on X for each fixed € and are continuously differentiable on X x N(0),
a neighborhood of ¢ = 0 in Ek. If S(0) = {xeX: g(x,0) > 0 and £*(0) >
f(x,0)} is nonempty and bounded, f*(0) is finite, and there is a point

yeX such that g(y,0) > 0, then sz*(O) exists and is finite for all

zeEn, and

D £%(0)= min max zV% L(x,u.,e) = min max {z(V_f(x,0) - uv g(x,0))},
e xeS(0) ueK(x,0) xeS(0) ueK(x,O)e e

where K(x,0) is the set of optimal Lagrange mulitpliers for the given
xeS(0).

Some recent investigations of this sort have focused on the extremal
value function inequality-equality constrained optimization problems

with right hand side perturbations, of the form

maximize f(x)
s.t. g(x) Z'Ei il LS T

h(x) = €j+m i = IyevuyPs

P3(E)

Let R(e) = {x: gi(x) > €y = e e R s hj(x) = Ej+m’ = R o o
and let
inf {f(x): xeR(e)} R(e) # ¢

£*(e) =

i
=

+ 00 R(e)

We also define, for R(e) # @, S(e) = {xeR(e): f(x) f*(e)}, and the
Lagrangian L(x,u,w,e) = f(x) - u[g(x)-e] + w[h(x) -e}. Given these
definitions, Gauvin and Tolle [50] have proved the following continuity

property of f*(e).

-13-~
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Theorem 3.5. If R(0) # ¢, with R(¢) uniformly compact near € = 0, and

if CQl holds for some x*e¢S(0), then f*(eg) is continuous at & = 0.

Fiacco [45]) has recently shown that this result holds for the
general problem
min f(x,e)
s.t. glx,e) > 0 Pa(e)
h(x,e) = 0,

where the problem functions are Cl in (x,€), R(€) and S{€) are
defined to be the feasible region and solution sets of P, (e),
respectively, and where the parameter € is a vector in E .

In the absence of equality constraints, Rockafellor [103] has shown
that, under certain second-order conditions, the function f*(e) of
P3(e) satisfies a stability of degree two, i.e., in a neighborhood of
€ = 0, there exists a twice differentiable function ¢: Em+ El with
f*(e) > ¢(e) and £*(0) = ¢(0). Under this stability property, bounds
on the directional derivatives of f* (when they exist) can be derived.
For convex programming problems of the form PA(E}’ Gol'stein [57] has
shown that a saddle point condition (summarized subsequently) is
satisfied by the directional derivative of f*. Gauvin and Tolle
[50], not assuming convexity, but limiting their analysis to problem
P3(e), extend the work of Gol'stein and provide sharp bounds on
the directional derivative of f*, also without requiring the existence
of second order derivatives. These results were extended by Fiacco
and Hutzler [44] to the more general problem P4(e) and are presented
next.

f(x,g) - ug(x,e) + wh(x,e) denote the usual

Let L(x,u,w,€)
Lagrangian of Problem PA(E) and let K(x,0) denote the set of Kuhn-
Tucker vectors (u,w) corresponding to a solution x of Pa(e) at € = 0,
let Q(z) = (£*(Bz) - £*%(0))/g, wnere zeEk is a unit vector. As
above, R(£) denotes the feasible region, S(e) the solution set, and
the functions f, g, h are assumed jointly once continuously differen-

tiable in (x,e). The following results hold [%4] for Problem PA(E)'

=1l
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Theorem 3.6. If R(0) # ¢, R(¢) is uniformly compact near ¢ = 0, and
CQl holds for some x*eS(0) then, for any zeEk,

Lim inf Q(2) > min 29 L(x*,u,w,0) (3.1)
g0t (u,w)eK(x*,0) ©

The next corollary, following immediately from the theorem, gives

a result that is weaker, but useful in the sequel.

Corollary 3.7. 1If R(0) # ¢, R(e) is uniformly compact near € = O,

and CQl holds at each xeS(0) then, for any zeEk,

lim inf Q(z) > inf min zVEL(x,u,w,O) (3.2)
g0t xeS(0) (u,w)eK(x,0)
Theorem 3.8. Under the conditions of Corollary 3.7, for any
zeEk,
lim sup Q(z) < inf max zV_L(x,u,w,0) (3.3)
g-0" xeS(0)  (u,w)eK(x,0) :

Corollary 3.9. If, in the hypotheses of Corollary 3.7, CQl is replaced

with CQ3, then for each zeEk, sz*(O) exists and
D £%(0) = inf 2V _L(x,u(x),w(x),0)

: xes(0)  © (3.4)
where (u(x),w(x)) is the unique optimal Lagrange multiplier vector
associated with xeS(0).

The following theorem obtained by Fiacco and Hutzler [44] corres-
ponds, under slightly different assumptions, to results obtained by
Gol'stein [57] and Hogan [66], for a general class of problems that

are convex in X.

Corollary 3.10. Let -f and 8> i 1,...,m, be convex functions

in x, and let the functions h,, j l,...p, be affine in x, with

all functions jointly Cl in (x,e). If R(0) # @, R(e) is uniformly
compact near ¢ = 0, and CQl is satisfied for each xeS(0), then sz*(O)
exists for each zeEk, and

sz*(O) = inf max zV;L(x,u,w,O)

x€S$(0) (u,w)ekK(x,0) (3.5)

=15~
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Lempio and Maurer [77] have obtained similar bounds under analogous
assumptions that are required to handle general perturbed infinite dimen-
sional programs of the form minimize f(x,t), subject to xeRl and g\x,e)eRz,
where Rl and R2 are arbitrary closed convex sets. Auslender [10] has

also obtained these bounds for the right-hand side pertubation
problem PB(E)’ extending the results of Gauvin and Tolle [50] by using
a weaker form of the Mangasarian-Fromovitz constraint qualification.
This allows him to replace the differentiability assumption on the
objective and inequality functions with the weaker requirement that
tiiey be locally Lipschitz.

Although we are focusing attention on programs for which the
spaces involved are finite dimensional, we note that most of these
sensitivity results have been extended to infinite dimensional programs.
For example, Maurer [82,83 ] has recently obtained a characterization
of the directional derivative of the extremal value function subgradient
for problem PA(S), and has applied his results to a class of optimal

contyrol problems.

3.3 Lipschitz Properties

In tais section, we will consider problem Pl(s). Following the
notation used in Section 2, recall that R(eg) = {xeE": g(x) > e},
B = {e in Ek: R(e) # @}, and f*(e) = inf {f(x): xeR(e)}. In addition,

let S(e,8) = {xeR(e):f(x) < f*(e) + & for § > O}.

Stern and Topkis [111], defining a notion of linear continuity,
establish conditions under which f*(€) satisfies a Lipschitz condition.
Under convexity assumptions on the problem functions, they also show

that S(e,8), the set of §-optimal solutions, is continuous.

Definition 3.11. The real-valued function f(x) is said to satisfy a

Lipschitz condition on a set S if there exists a value M > 0 such that

[f(x)-f(y)| < M- ||x-y||, for all x, yeS.

o
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T
Definition 3.12. Suppose ¢ is a point-to-set mapping from yg1¥‘ to sub-

sets of En. Then ¢ is said to be uniformly linearly continuous on ?Q;Y

if there exists a value M > 0 such that inf llz—xll =3 M-[Iy—?][, for all

ol xed(y)
ze¢(y) and for all y,yeY.

Theorem 3.13. Let 3(;8 and suppose R(g) is bounded for ¢ in B. If R(e)

is uniformly linearly continuous with constant K on BN {c:e < €}, and
if f satisfies a Lipschitz condition with constant M on R(E), then f*(e)

satisfies a Lipschitz condition with constant KM on BN{e:e < e},

Theorem 3.14, 1If £, and -gi, i=1,...,m, are strictly quasi-convex,
R(e) is bounded, and I(E) # @, then S(e,8) is continuous at € for each

8 > Q.

Hager [61] has recently obtained Lipschitz results for quadratic programs
with unique sclutions. Hager obtained the Lipschitz continuity of

the solution of such programs under the hypothesis that the gradients

of the binding constraints satisfy an independence criterion. Under
these same conditions, the Lipschitz continuity of the (unique)

Lagrange multiplier vector is also obtained. In both instances,

Hager provides an estimate of the Lipschitz constant.

~-17~
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4. Implicit Function Theorems

There are many forms of implicit function theorems which have found
extensive application in functional analysis. These theorems treat
the general problem of solving an equation of the form

f (x,y) = 2 (4.1}

for x in terms of y and z. The classical results in this area are by
now well known. For completeness, we present two forms of the implicit
function theorem. A more complete discussion of these theorems is

contained in [16]}.

Theorem 4.1. Suppose f: En+2 E" is a continuously differentiable mapping
whose domain is T. Suppose (X,7) T, f(X,¥) = 0, and f'(x,0) = 0 implies
x = 0. Then there exists a neighborhood of ¥, N(?)g;Em, and a unique
function ge C'(N(y)), &:N(¥)>E", with g(y) = x and £(g(y),y) = 0 for all
yeN(y) .

The function g is said to be defined implicitly by the equation
f(g(y),y) = 0. In the next theorem, the notation fj is used to denote
the partial derivative of f with respect to its jth argument.

Theorem 4.2. If fj(xl""’xk;yl""’yl) is analytic in a neighborhood of b,
the origin for j = 1,...,k, with £(0,0) = 0 and [B(fl,...,fk)/B(xl,...XK)]
exlists at x = y = U, then the system of equations fj(xl"°"xk;yl""y£) = 0,
for j = 1,...,k, has a unique solution Xj = xj(yl"°"yl)' which vanishes

for y = 0 and which is analytic in a neighborhood of the origin.

Results of this type have particular applicability to sensitivity
analysis in nonlinear optimization and have only recently been
exploited. Hildebrandt and Graves [63] have provided results on the

existence and differentiability of solutions of equation (4.1). Cesari

~18-
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[ 20] has established conditions under which the equation f(y,y) = 0 has
at least one solution, and discusses the continuous dependence of vy

on parameters of the equation. Rheinboldt [93] has given global
existence theorems for the solution of (4.1) which leads to a "continu-
ation property". This continuation property has been applied to the
solution of parametric optimization programs.

Fiacco and McCormick [45] provided a first application of an
implicit function theorem to obtaining sensitivity information about
the solution of a mathematical program. Since then, additional results
in this area have been obtained by Bigelow and Shapiro [14], Armacost
and Fiacco [3,4,5,6], Armacost [1}, Fiacco [41], and Robinson [98].

In [94], Robinson provided a implicit function theorem for

variational inequalities of the form

0 e f(x,e) + T(x), (4.2)

where f:XxP Hn, X is an open set in En and P is a topological space,
and T:En—*En is a maximal monitone operator. Robinson showed that

if f is continuously (Frechet) differentiable on XxP, and XOQ;X LS
nonempty and bounded, then the set of solutions S(e) of (4.2) is
u.s.c. in a neighborhood of ¢ = ¢ ; S(g) = XO; and for each & > 0,

$ # S(e) €S(e) + (A + 8) ale) B, (4.3)

where

a(e) = max {||[f(x,e) - £(x,0)]|]: xeX _},

B is the unit sphere in En, and X is a Lipschitz modulus regulating
(Lfo + T)_l. Here,
LE_(*) = £(x_,e ) + F(x_,e) () - %]

where F, the Frechet derivative of f, is positive semi-definite and
-1
(LE_+ T) (0} =X .
o o
As Robinson indicates, nonlinear complementarity problems, and thus

the Kuhn-Tucker conditions for mathematical programming, can be written

=] 0=
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in the form of (4.2). Robinson's result (see [95]) when applied to
linear equations of the form

0 e Ax + a + T(x), (4.4)

; e n : 4 . .
where A is an n X n matrix, acE , and T(x) is the subdifferential opera-
tor of the indicator function of a nonempty polyhedral convex set,
leads to the relation

@ # S(A’,a') N X C S(A,a) + Ae'(1-Ae')" (1+u)B. (4.5)

Here S(A,a) is the set of solutions of (4.4), X is any bounded open
set containing S(A,a), €' = max {||A'-A|]|, ||a"-a|]|}, u is a bound on
S(A,a) and X is a Lipschitz modulus for [A + a + T]—l.

These results can be applied directly to quadratic programs, and in
that context (4.5) can be viewed as an extension of Daniel's [22] result
on the solution stability for definite quadratic programs, which
although it does not involve an implicit function theorem, is given

next for comparison with (4.5). Daniel considers the program

min % (x'Kx) - xk
s.t. Gx < g
Dx = d,

where K is positive definite and symmetric with %>0 its smallest
eigenvalue. Letting il -i[ be the [2 norm, Daniel obtained the following

special case of (4.5).

Theorem 4.3. 1If e = max{||K'-K||,||k'~k||}, then for ¢ > X,

flas = 2 & 0oL - [, 1

where Xy solves the program above and x; solves that program when K'

and k' replace K and k, respectively.

=
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5. First- and Second-Order Sensitivity Analysis

Using additional assumptions, a number of stronger results have
been obtained which characterize more completely the relationship
between a solution set and the optimal value function of a mathema-
tical program to general perturbations appearing simultaneously
in the objective function and anywhere in the constraints. These
problems generally have the form Iz(e), which we treated briefly

in Section 3 and we formulated as follows:

minimize f(x,c)

s.t. glx,e) >0 IZ(L)
h(xs€) = 0;
k : .
vhere: f£:E® x E* EY, g:E® x B+ E®, and h:E® x ES* EP.

Fiacco and McCormick [45] have obtained conditions which
guarantee the existence of a differentiable function of ¢ which
locally solves a particular form of }2(6)' Fiacco [41), Armacost
and Fiacco [3,4,5,6], and Robinson [98] have extended this result
to programs in which the pertubations appear as in 12(&). All of
these results rely on a form of the implicit function theorem in
order to establish the existence of a differentiable solution of

PA(L). The next theorem, due to Fiacco [41], establishes the

existence of a once continuously differentiable (local) solution
P .
of 4(c)

Theorem 5.1. 1If

F1) £, g, h are C2 in (x,¢) in a neighborhood of (x*,0),

F2) the second-order sufficiency conditions hold at
[x*,u*,w*],

3) the linear independence (LI) assumption holds at x*, and

F4) uj > 0 for all i such that gi(x*) = 0, 1.8y s%{ict
complementary slackness (SCS) with respect to u holds

at x*.

e
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then
i) x* is a local isolated minimizing point ofi’a(O) with
unique Lagrange multipliers u*, w¥,
ii) for ¢ near 0, there exists a unique Cl function

y(e) = [x(e),u(e),w(e)] satisfying the second-order
sufficiency conditions for problem VA(C), with
y(0) = [x*,u*,w*], and

iii) for € near 0, the gradients of the binding constraints
are linearly independent, and strict complementary

slackness holds for u(e) and g(x,e).

Jittorntrum [ 70] has obtained results that do not require the
strict complementarity condition (F4). Under these weakened assump-
tions, (i) and (ii) (less the differentiability of y(c)) pertain,
along with the local differentiability of f*(e) =f (x(e),e) at € = 0.

In addition, the triple (x(&),u(e),w(e)) is shown to satisfy a

Lipschitz condition in each of its components at € = 0.

Spingarn [110] has also extended the above result by considering
2

the problem Iz(s) with additional constraints that restrict ¢ to a C
submanifold, P, in E and restrict x to a 'cyrtohedron'" of class
C2 in En. He has shown a certain set of second-order conditions to
be necessary for optimality, and that these conditions also imply
the results obtained by Fiacco [41]. Before stating this result,
we must introduce additional notation and define several terms.
This notation follows that found in [110].

Let A and B be finite (possibly empty) index sets, and for icA and
jeB, let {gi} and {hj} be finite collections of C1 functions defined

and the open set UCE. Also, for xeU and A'CA, let

I'(x,A")

{Vgi(x):ieA'} U {th(x):jeB}, and

Z(A")

{er:gi(x) = (Q = hj(x) for all ieA' and jeB},

ST
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e TR
Definition 5.2. Let S be a nonempty connected subset of E . Then,

for K21, S is a cyrtohedron of class Ck if there exist sets of C
functions {gi} for ieA and {hj} for jeB, defined on a neighborhood N

|
of x*cE with:

i) x*eZ(A), and for xeN, xeS if and only if gi(x) >0
for all icA and hj(x) = 0 for all jeB,
gy —z:angi +§:ijhi = 0 for some ai, bj with aiz_O, then

a; = bj = 0 for all i, j, and
A Ts )] Ac:AlCZA and Y(x*,Al)c:span F(x*,Ao) implies that

Z(Ao) = Z(Al)'

Consider now the problem PZ(E) which is P4(E) with the additional
constraints mentioned above. The following definition contains condi-

tions which are sufficient for optimality in PL(L).

. 2 ) ;
Definition 5.3. Let S be a cyrtohedron of class C°. The point y* =

(x*,u*,w*) is said to satisfy the strong second-order conditions for

1 3 <
P4(£) Tfs

i) x*e{x:g(x,e) > 0}N {x:h(x,e) = 0},
ii) - VL(x*,u*,w*,c) is the relative interior of the
normal cone to S at x¥%,
iii) the gradients of the constraints that are binding at
x* are linearly independent,
iv) for each 1 = 1,.¢e5m5 ui > 0 if and only if gi(x*,a) = 0,
and
v) z'[VZL(x*,u*,w*,s) + K(VL(x*,u*,w*,e))]z > 0 for all
non-zero z ¢ E" for which
a) z is in the largest linear subspace contained in
the tangent cone to S at x¥,
b) z'Vgi(x*,E) 0 for all ieB*(e), and
c) z'th(x*,c)

[}

I

@ for j = L;.veDs

w3
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where K(+), the curvature of the facial submanifold of S which
contains x*, is an n X n matrix,
. n
If the set S is taken to be E ', then P;(L) reduces to the program

PA(L) and (ii) and (v) above become the familiar conditions

ii') VL(x*,u*,w*,e) = 0, and
v') z'VZL(x*,u*,w*,e) z > 0 for all non-zero zeE" for which

(b) and (c) above hold.
With this background, we now state Spingarn's result,

Theorem 5.4. Consider the probleml’i(e). If the strong second-order
k
conditions hold at y*=(x*,u*,w*) €S x Em X Ep, ¢ in E , then there
k
exist neighborhoods NCE and XC E" of e* and x* respectively, and a

Cl function y(e) = (x(¢),u(e),w(e)) defined on N such that:

i) y(e) satisfies the strong second-order conditions for PZ(E),
ii) for each € in N, x( %) is an isolated local minimizer
for PL(E), and
iii) for each ¢ in N, the Lagrange multipliers u(t), w(e),

associated with x(g) are uniquely determined.

Under slightly weaker assumptions than those invoked by Fiacco
[41], Robinson [98]| has obtained results similar to those stated in
Theorem 5.1, proving the continuity of the Kuhn-Tucker triple, and using

the results to derive bounds on the variation of y(g).

Theorem 5.5. Let B be a Banach space, S C B, XC En, with X and S open sets.
Let f, g, and h have second partial derivatives with respect to x which

are jointly continuous on X x S. For ¢* in S, suppose (x¥*,u*,w*) is a
“uhn-Tucker triple of PA(E)' Also assume that LI, SCS, and the

second-order sufficiency conditions apply at (x",u”,w" ). Then

=Pl
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i) there exists a continuous function y(e) with
v(c*) = (¥*,u*,w*), and for each ¢ in S, y(¢) is the unique
Kuhn-Tucker triple of WZ(L) and the unique zero of
[VE(x,u,w,e); v g (%,€),...,0 g (x,€),H.(x,8),.,.,0 (x,e}],
171 m-m . P

ii) for € near ¢%¥ x(¢) is an isolated local minimizing
point of P4(u), and

iii) LI, SCS, and the second-order sufficiency conditions

hold for € near e#*.

Theorem 5.6. Under the hypotheses of the}sreviogs theorem, for any
xe(0,1), therelexist neighborhgods NA of € and NA of (¥*,u*,w") such that
for any € in NA and any y in NA we have:

ly =y || < @ -078 ] Mren),en ™ e,

where M is the Jacobian of G = [ VL(x,u,w,€), ulgl,...,umgm, nl,...,np].

If instead of the Lagrangian of P4(s) we consiaer the logarithmic-

quadratic penalty function: n P
WOx,e,r) = £(x,€) -t X in (g(x,e) + 1/C2p) jéi h(x,c),

we have the following theorem due to Fiacco [34].

Theorem 5. 7. Assume (F1)-(F4) above. Then, in a neighborhood of
(e,r) = (0,0) there exists a unique, once continuously differentiable
function y(e,r) = [x(g,r),u(e,r),w(e,r)] satisfying:

(KT1) VL(x,u,w,&) = 0

(KT2) uigi(x,e) =r i = 1. e ,m, and

(KT3) hj(x,a) =w.r ) S
with y(0,0) = [x*,u*,w*]. Furthermore, for any (€,r) near (0,0) with

r > 0, x(e,r) is a locally unique unconstrained local minimizing point

-25-
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of W(x,e,r) with gi(x(u,r),n) >0 for each i = 1,...m, and Vzw(x((,r), )

positive definite.

Using a number of the results stated above, Fiacco [41] has obtained
first-order (Taylor) approximations of y(g). The existence of higher
order derivatives of y(e) is easily seen to depend on the degree of
(continuous) differentiability of the problem functions. This follows
directly from an application of the implicit function theorem (cf. [13]).
An analogous result holds for y(e,r). 1In fact, Fiacco [41] has shown
that, under the appropriate conditions, not only do higher order
derivatives of y(e,r) exist, but these derivatives converge to the

corresponding derivatives of y(g).

Theorem 5.8. Let f, g, and h have continuous derivatives of all orders
up to k+1. Assume that (F2)-(F4) apply. Then, in a neighborhood of
(e,r) = (0,0), there exists a unique function y(€,r)e Ck,
y(e,r) = [x(e,r),u(e,r),w(e,r)] satisfying (KT1)-(KT3), with

y(e,r)> y(e), and

(6 /ded e, o> 1ad/aed ey 5= 1,000k,

as r» 0 for (e,r) near (0,0).

Armacost and Fiacco [2] have illustrated computational aspects of
the convergence properties outlined above., Using the SUMT (Sequential
Unconstrained Minimization Technique) computer code developed by
Mylander, Holmes, and McCormick [91], and a subroutine for sensitivity
analysis coded by Armacost and Mylander [7] that implements a procedure
based on the results given in Theorems 5.12 and 5.13, they demonstrated
the convergence of the first partial derivatives of the optimal solution and
the optimal value function of several problems. Subsequently, Armacost
and Fiacco [6] used this computer program to analyze the behavior of the
solution of an inventory problem relative to changes in several problem
parameters.

Armacost and Fiacco [6] have established the first- and second-order
changes in the optimal objective function of the problem P4(e) by way of

the following theorem.
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Theorem 5.9. Assume that (F1)-(F4) hold for PA(L). Then, in a neighbor-
hood of £ = 0, the extremal value ftunction f*(¢g) is twice continuously
differentiable as a function of ¢, and
i) t*(e) = L¥*(e),
ii) V. f*(e) = V.L(x(e),u(e),w(e),e), and
iii) Véf*(e) VE[VEL(x(E),u(s),w(E),E) It

1l

This sensitivity result, obtained for the usual Lagrangian, has
been extended by Armacost and Fiacco [3] to the augmented Lagrangian
used by Buys [18] and Buys and Gonin [19] to obtain related sensitivity
results. The a;gmented Lagrangian is defined as:

o(x,u,w,e,c) = f(x,¢) -Egj(ui- (1/2)cgi(x,e))g(x,e)
+ 2 (w + (1/2)Chj(x,s))hj(x,e) - (1/2¢) ui,

j=1 iek
where J = {i:u - cg(x,0) >0} and K = {i:u - cg(x,0)< 0}.
i i i i
Theorem 5,10. Under the assumptions (F1)-(F4), for € near 0 and c > c¥*,
there exists a unique Cl function y(e,c) = [x(e,c),u(ey,c),w(e,c),ule,c)]
satisfying:

i) V¢ (x,u,w,e,c) = 0
ii) uiggx,s) =0 i=1,...,m, and
iii) h§x,e) =0 3 = LyaeesDs
with [x(e,c),u(e,c),w(e,c)] = y(¢). Furthermore, for any ¢ near 0 and
¢ > ¢* we have that x(e,c) is a locally unique unconstrained local
minimizing point of ¢[x,u(e,c),w(e,c),e,c] and v2¢ 1is positive

definite for [x,u,w] near [x*,u*,w*].

Armacost and Fiacco [5] have also obtained first- and second-order
expressions for changes in the extremal value function as a function
of right hand side perturbations. Consider the problem

minimize f(x)

5.t. g(®) > ¢, £ = L gonn P3(c)
i
h(x) =e, = 1,000,p
-0




The Lagrangian for P3(c) is given by: =
quwc)zfu)-Xu[gU)*E]*Zw[hU)'i ]
i=1 g g jtm
The following theorem applies to thls cons ruc

Theorem 511. Let f, g, and h be twice continuously differentiable in x

in a neighborhood of x* for € near 0. Assume (F2)-(F4) apply to P3(E).

Then, in a neighborhood of € = 0,
i) ¢ f*%(e) = [u(e),-w(e)] , and
ii) ¥ fx(e) = [7 u(e),-v w(e)].
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6. Additional Results, Applications and Future Research \

We have endeavored to present a number of basic contributions to the
theory of sensitivity and stability analysis for general classes of nonlinear
programming problems. Hopefully, we have captured the main thrust and range
of developments for the static nonconvex deterministic problem that
relate the behavior of the optimal value or solution set to perturbations
of problem parameters. We have in this brief account omitted a number of
interesting results and implications that weave the fabric more tightly,
and we nave not covered results that significantly exploit additional
problem structure. In particular, there are numerous results obtained
by Rockafellar in his book [104] and in several papers that utilize
convexity and duality properties to characterize stability. Geoffrion
[52], Gol'stein [57], Hogan [68] and others have also contributed further
basic results in convex programming. Quadratic programming stability
characterizations have been rather thoroughly developed by Boot [17],

Guddat (60], and Daniel (22], while the parametric range analysis techniques
for linear programming are now well-known and routinely implemented, with
the stability characterizations being further extended by Mills [88],
Williams [113], Dantzig, Folkman and Shapiro [25], Bereanu [12], Martin
{81], and Robinson [95,100]). Further results involving the exploitation

of other structures, for example by Dembo [26] for geometric programming,
have recently been obtained, and others, e,g., for separable [36] and
factorable programming [85] should be forthcoming.

It should also be emphasized that more general treatments of parametric
stability results have been obtained recently, primarily bv Robinson
[94-101], who has provided both a basic theoretical framework and a
number of deep stability characterizations. Their generality encompasses
applications to complimentarity and equlibrium problems, as well as to
mathematical programming problems, both in finite and infinite dimensional
spaces, and involve effective use of monotone operators, convex analysis
and contemporary techniques. We should also mention the many general
results obtained by Kummer [74] which synthesize a good bit of the theory

utilizing the point-to-set mapping constructs.
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We should also mention that an entire body of theory, somewhat more
general but to a great extent anologous to the theory involving parametric
variation, has developed more or less in parallel with the parametric
theory. This involves the study of the effects of general perturbations
of the problem functions on solution behavior. For example, consider
Pk: minxfk(x) S £, gk(x) =00 hk(x) = 0, where the functions fk, gk, hk
converge in some specified sense to f, g, h, respectively, as k - =,
Questions concerning the relationship of solutions of P, to solutions of
P minxf(x) s.t. 8(x)20, h(x) = 0, are of interest and obviously relate
to sensitivity and stability questions. Numerous references could be
given here, in addition to those already provided for the parametric
perturbations which are certainly relevant (noting that the problem
P(e) may be analyzed at & = & by considering problems of the form Pk where
fk(x) = f(x,ak), etc., where uk» £ as k - «), The interested reader
is referred to the recent work of Salinetti and Wets [106] that gives a
number of interesting results involving sequences of convex sets and
their application to convex stochastic programming as well as many
references to other work in this area. This application reminds us
that the general area of stochastic programming has not been addressed
in this survey, either, although the inevitable presence of uncertainty,
e.g. parameters that are random variables, would obviously suggest
that perturbation analysis results characterizing solution sensitivity
or stability would clearly be applicable. Explicit connections have
already been made, as suggested by Salinetti and Wets [106] and also by
Bereanu [12].

Sensitivity and stability analysis results are ready for extensive
computational implementation. Experimental results have unequivocally
demonstrated the practical applicability of various computational schemes
that can generate a wealth of information that should be extremely val-
uable to users. The most extensive computations have apparently been
performed by Armacost and Fiacco [2,6], utilizing a computer program
now called "SENSUMT". This interfaces a subprogram calculating
sensitivity information with SUMT [91] and was developed by Armacost
and Mylander [7], based on the theory developed by Fiacco [41]. The

approach defined and validated in [41] is based on utilizing the
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information generated by a solution algorithm to calculate sensitivity
information as a solution is approached. The particular algorithm for

which the theory is developed in detail in [41] is the algorithm based
on the logarithmic-quadratic mixed barrier-penalty function algorithm
for the problem involving inequalities and equalities and general
parametric perturbations. However, the general approach may
conceivably be applied to any algorithm and should yield an efficient
procedure for adding a sensitivity analysis capability to a nonlinear
programming code, once the sensitivity formulas appropriate to the
general algorithmic manipulations and data organizations have been
obtained. Armacost and Fiacco [5] have obtained efficient formulas
for the general problem in terms of the given problem functions
(without presupposing a given solution algorithm is used), and
have also developed formulas for a class of exact penalty functions
[3], the latter also having been obtained by Buys and Gonin [19].
Armacost [1] has obtained results in terms of an exponential
penalty function and a general ''sequential' class of algorithms.
Fiacco [38] has provided results in the context of projected gradient
and reduced gradient calculations. Recent computational experiments
using SENSUMT have been conducted by Fiacco and Ghaemi [42,43], who,
for example, make numerous inferences concerning the solution of
a 22-variable stream-water pollution-abatement model from an analysis
of the sensitivity information deriving from 64 model parameters.
Dinkel and Kochenberger [30,31] and Dinkel, Kochenberger and Wong [32]
have also reported the successful generation of sensitivity
information for several geometric programs based on practical
examples as well as the value of resulting interpretations. Pre-
liminary computational work has thus begun and the practical feasibility
and applicability of generating rather intricate sensitivity information
for nontrivial nonlinear programming problems has been demonstrated.
Widespread implementation and routine use of this capability is now

enthusiastically encouraged and will hopefully not be long in

coming.




Concerning the recognition by the scientific community of
mathematical programmers of the importance and practical ability ot
generating sensitivity information as part of the usual output of
a nonlinear programming code, we note that in a questionnaire, "Survey
on Mathematical Programming Software Performance Indicators,"
circulated by the Mathematical Programming Society in May 1979, two
items solicit information regarding the importance attached to the
provision of solution sensitivity information. We are happy to see
the emergence of interest in this vital requirement, but are disturbed
that the interest is so modest and late in arriving, even to sophisticated
theoreticians and practitioners. In this context, we also note that
the first conference to our knowledge devoted exclusively to sensitivity
and stability questions in mathematical programming took place in May
1979 [40].

Another area of research in mathematical programming that is
relevant to sensitivity and stability amalysis is the development of
bounds on the optimal value function value or on the components of
an optimal solution vector. These bounds are frequently obtained by
generating simpler functions that bound the given problem functions,
e.g., convex envelopes of the constraint functions, as in the
separable nonconvex programming approach of Falk and Soland [36] or
convex underestimating or concave overestimating functions, as in
the nonconvex factorable programming approach of McCormick [85]. But
once a procedure for generating simpler "bounding problems'" is at
hand, it can generally be applied to a perturbation of the original
problem to obtain “simple" (e.g., convex) bounding problems. If
the perturbation analysis of the simpler associated problems is
tractable then, once the relationship between the optimal sclution of
the perturbed bounding problems and the original perturbed problem
is understood, we have a procedure for generating bounds on the
perturbed solution of the original problem. Geoffrion | 53] gives
a number of valuable insights and several computationally implementable
schemes for obtaining bounds on the variation of the optimal value
function of a given problem, in terms of bounds on the variation of

the objective function of the given problem, for example. Bounds
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results such as those obtained by Daniel [22] for quadratic programming,
a specific instance of which was given in Theorem 4.3, and results

at a very high level of generality obtained by Robinson [91] and

indicated in Section 4, giving bounds on the optimal solution set in

terms essentially of bounds on the original problem functions, are

also applicable here. To our knowledge, there has been no theoretical
or computational exploitation of the approach suggested in this
paragraph, other than that reported by Geoffrion [53]. Development I
of this idea, including a study of the connection with sensitivity
and stability theory of other procedures for generating solution bounds,
1 for example, techniques utilizing the use of interval arithmetic
proposed by Robinson [96] and Mancini and McCormick [78], and utilizing
many of the results known for systems of equations such as that
tailored to the Karush-Kuhn-Tucker conditions by Robinson [98] and
stated in Theorem 5.6, should be a subject of fruitful research.
Some applications of sensitivity and stability analysis in
mathematical programming are rather obvious, - g. estimation of
solutions of perturbed problems, given a solution of a problem with

given parameter values, and determination of parameters to which the

optimal value or solution set is most sensitive. Most applications

are reasonably well documented. We mention several here for
completeness, along with some references: (1) optimality conditions
[41,45], (2)convergence of algorithms [87], (3) rate of convergence

of algorithms [98], (4) decomposition [54,76], and (5) implicit function
minimization [28,65]. Other applications can surely be made to
parametric nonlinear programming and deformation techniques {55 3565 B3,

- ) ], homotopy continuation methods [} ,.7 ,i. ]|, and to the derivation,
conditioning and acceleration of alogrithms [41,45]. Conversely,

all of the areas mentioned can undoubtedly uncover an abundance of

results that are applicable to sensitivity and stability results in
| mathematical programming.
The future should see a unification of the powerful collection
of results that are now known and scattered throughout the literature.

The reader may note that only one book has been devoted entirely
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solutions of perturbed problems, given a solution of a problem with
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optimal value or solution set is most sensitive. Most applications
are reasonably well documented. We mention several here for
completeness, along with some references: (1) optimality conditions
[41,45], (2)convergence of algorithms [87], (3) rate of convergence
of algorithms [98], (4) decomposition [54,76], and (5) implicit function

minimization [28,65]. Other applications can surely be made to
parametric nonlinear programming and deformation techniques {55,56,04,

49], homotopy continuation methods [3:,47 ,55], and to the derivation,
conditioning and acceleration of alogrithms [41,45]. Conversely,
all of the areas mentioned can undoubtedly uncover an abundance of
results that are applicable to sensitivity and stability results in
mathematical programming.

The future should see a unification of the powerful collection
of results that are now known and scattered throughout the literature.

The reader may note that only one book has been devoted entirely
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to sensitivity analysis in mathematical programming, the book by

Dinkelbach |[33], and that appeared in 1969 and was confined to

linear programming. Unification presupposes the existence of

enough interesting results to essentially provide a significant

body of theory, a methodology, and this has only been extensively
developed in the recent past. Certain efforts to synthesize the
theory have begun. We mention the works of Dantzig, Folkman and
Shapiro [25], Rockafellar [104], Geoffrion [51], Gol'stein [57],

Hogan [67], Robinson [94-101], Gal [46], Fiacco [41], Kummer [74],
Wets [112], Dembo [26], Kojima [72], and, of course this survey. A uni-
fied methodology will accelerate the understanding of basic theory and
stimulate algorithms and software developments, and thus hasten

widespread and routine implementations.

P
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